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Figure 1. Comparison of joint kernel generation and our sequential kernel generation. A blurry image Iblur is acquired as the camera
moves over the exposure time (t0 ∼ tN ), with images It captured at each camera pose being composited together. Previous methods
generate warped rays of the blurring kernel in a single step by a parameterized network hp without considering the temporal sequence of
camera motion. However, our approach iteratively estimates warped rays along the sequential camera motion trajectory.

Abstract

Neural radiance fields (NeRF) has attracted considerable
attention for their exceptional ability in synthesizing novel
views with high fidelity. However, the presence of mo-
tion blur, resulting from slight camera movements during
extended shutter exposures, poses a significant challenge,
potentially compromising the quality of the reconstructed
3D scenes. While recent studies have addressed this is-
sue, they do not consider the continuous dynamics of cam-
era movements during image acquisition, leading to inac-
curate scene reconstruction. To effectively handle this is-
sue, we propose sequential motion understanding radiance
fields (SMURF), a novel approach that employs neural or-
dinary differential equations (Neural-ODEs) to model con-
tinuous camera motion and leverages the explicit volumet-
ric representation method for robustness to motion-blurred
input images. The core idea of the SMURF is continuous
motion blurring kernel (CMBK), a unique module designed
to model a continuous camera movements for processing

blurry inputs. Our model, rigorously evaluated against
benchmark datasets, demonstrates state-of-the-art perfor-
mance both quantitatively and qualitatively.

1. Introduction

Reconstructing complex 3D scenes from 2D images of dif-
ferent views and re-rendering novel view images represent
a core problem in computer vision and graphics, with sig-
nificant applications in augmented reality (AR) and virtual
reality (VR). Over the past few years, photo-realistic novel
view synthesis has greatly advanced with the emergence of
Neural Radiance Fields (NeRF) [33]. It takes 3D spatial co-
ordinates and 2D viewing directions (i.e. 5D vector) as in-
puts for mapping to the radiance and volume density, where
the process is parameterized through an implicit multi-layer
perceptron (MLP) based model. Exploiting classical vol-
ume rendering techniques [18], NeRF integrates the output
radiance and volume density along the emitted rays, making
the volume rendering process fully differentiable.
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Generally, NeRF variants have reconstructed 3D scenes
using well-captured, noise-free images as inputs along with
calibrated camera parameters. The training of complex ge-
ometry in 3D scenes necessitates sharp images; however, in
real-world scenarios, obtaining such images may not always
be feasible due to various factors. For instance, to capture a
sharp image, it is essential to set the camera’s aperture to a
small size, thereby increasing the depth of field. However,
a smaller aperture demands a significant amount of light,
which consequently leads to longer exposure times. Dur-
ing these extended exposure, any movement of the hand-
held camera results in undesirable camera motion-blurred
images. Recently, many works [25, 26, 31, 40, 57] have
been conducted on NeRF that takes camera motion-blurred
images as input. Deblur-NeRF [31] first proposes a method
that models blurring kernel by imitating the deconvolution
method for blind image deblurring, to reconstruct 3D scenes
from motion-blurred images and render sharp novel view
images. Since the inception of Deblur-NeRF, various meth-
ods [25, 26, 40, 57] for estimating the blurring kernel have
been proposed. However, their blurring kernel does not
continuously model the camera movement during exposure
time. Since actual camera movement is normally contin-
uous, it can be represented as a continuous function over
time, and such continuous modeling allows for a more pre-
cise tracking of the camera movement path, even when the
movement is complex or irregular. Previous works model
the blurring kernel without considering the sequential cam-
era movement, making the kernel for images with complex
camera motion imprecise.

In this paper, we propose a sequential motion under-
standing radiance fields (SMURF), which incorporates a
novel continuous motion blur kernel (CMBK) for model-
ing precise camera movements from blurry images. The
CMBK estimates the small change in pose regarding con-
tinuous camera motion. The output values of the CMBK are
not computed jointly as in previous studies but are designed
to be computed sequentially according to camera motion, as
shown in Fig. 1. Particularly, recognizing that the sequen-
tial camera movements share a single continuous function,
we employ a neural ordinary differential equations (Neural-
ODEs) [7] to ensure that the sequentially computed cam-
era movements exhibits continuity. Specifically, to reflect
the physics inherent in camera motion, we apply continuous
dynamics in the latent space to CMBK, and transform the
latent feature into changes in ray within the physical space.
Additionally, we introduce two regularization strategies to
prevent the divergence of camera motion generated through
CMBK. The first is residual momentum, which ensures that
the warped ray does not deviate significantly from the pre-
vious ray, thereby preventing overfitting. The second is the
output suppression loss, which also serves as a regulariza-
tion method to ensure that the warped ray does not diverge

significantly from the initial ray.
Our SMURF leverages explicit volumetric representa-

tion methods [6, 17, 34, 51] as its backbone. Specifically,
the tensor factorization-based approach, Tensorial Radiance
Fields (TensoRF) [6], facilitates compact and efficient 3D
scene reconstruction. Considering the fact that some parts
may exhibit significant blur while others are almost free
of blur in a single image, incomplete blurred information
and complete sharp information merge into a few adjacent
voxels via blurring kernel and ensure a coherent 3D scene.
Therefore, we adopt the TensoRF as our backbone as it ef-
fectively mitigates the uncertainty of information caused by
motion blur and enables faster training and high quality ren-
dering compared to previous approaches. While there ex-
ists a deblurring approach [26] that uses voxel-based radi-
ance fields as a backbone and shares the common goal of
fast training with ours, a key difference lies in their use of
Plenoxels [60] as the backbone. Furthermore, while they
adopt the different explicit representation method from ours
with another goal of efficient memory consumption, we di-
verge in our objectives, as we aim to leverage the advan-
tages of a 3D voxel-based method when utilizing blurry im-
ages as input.

To demonstrate the effectiveness of the proposed
SMURF, we conduct extensive experiments on synthetic
and real-world scenes. Our experimental results elucidate
the advantages of the CMBK in comparison to previously
presented blurring kernels.

Our main contributions are summarized as follows:
• We propose a continuous motion blur kernel (CMBK)

to sequentially estimate continuous camera motion from
blurry images mimicking the real-world motion blur.

• We propose two regularization strategies that guide the
warped rays to prevent divergence: residual momentum,
and output suppression loss.

• Our sequential motion understanding radiance fields
(SMURF) exhibit higher visual quality and quantitative
performance compared to existing approaches.

2. Related Work

2.1. Neural Radiance Fields (NeRF)

The synthesis of photo-realistic novel views from images
of different viewpoints has attracted considerable attention
with the advancement of NeRF [33]. In particular, NeRF
uses 3D spatial coordinates and 2D viewing directions to
map radiance and volume density, a process facilitated by
implicit neural representation (INR). Following the success
of NeRF, various sub-domains considering real-world sce-
narios have been explored. Many recent studies have ex-
tensively applied NeRF across various fields, including dy-
namic 3D scene modeling [3, 27, 28, 30, 37, 38, 44, 55, 63],
scene relighting [2, 32, 42, 50, 54], and 3D reconstruc-

2



tion [53, 56, 58]. Furthermore, recent studies have ap-
plied NeRF for deblurring 3D scenes [25, 31, 40, 57],
assuming blurry input images from real-world conditions
and aiming to produce clean images. Additionally, due to
the slow rendering caused by the costly MLP layers re-
quired to evaluate each pixel’s density and color, some stud-
ies [6, 22, 34, 36, 43, 51, 60] design networks for faster
training and rendering. To address these challenges, various
voxel-based explicit rendering methods [6, 34, 51, 60] have
been proposed, offering competitive performance to NeRF
while significantly reducing training and rendering times.
We adopt an explicit representation method, TensoRF [6]
as the backbone, which facilitates fast training and achieves
accurate and efficient novel-view rendering.

2.2. NeRFs from Blurry Images

Recently, several studies have been conducted to deblur 3D
scenes and synthesize clean novel view images using blurry
input images from different views. Deblur-NeRF [31] pro-
poses, for the first time, an implicit blurring kernel in
3D space inspired by blind deblurring methods for 2D vi-
sion [16, 21, 52]. This blurring kernel is intentionally
trained close to the pixels of the blurry image, and during
rendering, a clean image is obtained without the trained ker-
nel. DP-NeRF [25] models a rigid kernel that assumes phys-
ical scene priors when blurry images are captured. BAD-
NeRF [57], assuming a very short camera exposure time,
designs a kernel that linearly interpolates the camera mo-
tion trajectory in using simple spline-based method. Re-
cently, methods utilizing 3DGS have been proposed to en-
able faster rendering. For instance, Deblurring 3DGS [24]
adjusts Gaussian parameters like rotation and scaling to
generate blurry images during training, and BAGS [41] pro-
poses a blur-agnostic kernel and a blur mask using convolu-
tional neural networks (CNNs). However, these approaches
estimate the change in camera pose jointly, not modeling
the fact that light traces left by camera motion during expo-
sure time appear continuously. Therefore, we aim to design
a kernel where the elements of the blurring kernel, namely
the small changes in camera pose, are estimated sequen-
tially over time.

2.3. Neural Ordinary Differential Equations

Neural-ODEs [7] are proposed to interpret neural networks
within the framework of ordinary differential equations,
representing the underlying dynamics inherent in hidden
parameters. Neural-ODEs model a parameterized time-
continuous latent state and output a unique solution of
the integral of continuous dynamics, utilizing given initial
values and various numerical differential equation solvers
(e.g. Euler’s method [11], Runge-Kutta method [23],
Dormand-Prince-Shampine method [10]). They are exten-
sively used to continuously connect the latent space em-

bedded in videos [12, 15, 19, 39] or model the continuous
dynamics of irregularly sampled time-series data [45]. In-
spired by the fact that camera motion is continuous, we ex-
ploit Neural-ODEs to create a precise blurring kernel that
models the hidden continuous dynamics inherent in camera
motion.

3. Preliminary

Blind Deblurring for 3D Scene. For image blind de-
blurring [5, 49, 59], the blurring kernel h is estimated in a
fully unsupervised manner, and this process is achieved by
convolving h with sharp images. Deblur-NeRF [31] apply
this algorithm to NeRF, modeling an adaptive kernel hp for
each ray,

cblur(r) = cp(r) ∗ hp(r), (1)

where cblur and cp respectively denote the color of the
blurry pixel and the sharp pixel; ∗ indicates the convolution
operator.

The conventional image deblurring kernel takes a fixed
grid of size K × K centered around the location p. How-
ever, for 3D scene deblurring, applying such a kernel based
on NeRF requires computing cp for K2 rays, which is inef-
ficient in terms of memory and training time. To optimize a
kernel for the 3D scene, it is necessary to produce a sparse
kernel with fewer rays. Deblur-NeRF designs the sprase
kernel to acquire blurry color, and for the temporally con-
tinuous camera motion, we extend the process as follows:

cblur(r) =

N∑
i=0

wti
p cp(r

ti), w.r.t.

N∑
i=0

wti
p = 1, (2)

where N and ti respectively denote the number of warped
rays in camera motion and the instantaneous time during
exposure; wp is the corresponding weight at each ray’s lo-
cation, and rti represents the warped ray due to the camera
movement. As the warped rays are determined by parame-
terized learning, the blurring kernel is deformable, not in a
fixed grid manner.

Tensorial Radiance Fields (TensoRF). We follow the
architecture of TensoRF [6], an explicit voxel-based vol-
umetric representation utilizing CANDECOMP/PARAFAC
(CP) [4, 13] and block term decomposition [9], which mod-
els an efficient view-dependent sparse voxel grid. TensoRF
optimizes two 3D grid tensors, Gσ,Gc ∈ RFXY Z , for es-
timating volume density and view-dependent appearance
feature, employing the vector-matrix (VM) decomposition
that effectively extends CP decomposition. Exploiting this
method, the grid (3rd-order) tensor is decomposed into low-
rank 1D vectors and 2D matrices across three modes, reduc-
ing the space complexity from O(n3) to O(n2) compared
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to conventional explicit representations [60]. This grid is
represented as follows:

G =

R1∑
r=1

vX
r ◦MY Z

r +

R2∑
r=1

vY
r ◦MXZ

r +

R3∑
r=1

vZ
r ◦MXY

r , (3)

where ◦ denotes the outer product; R1, R2, and R3 indi-
cates the number of low-rank components. vX ∈ RX is the
vector along the X axes in each mode, and MY Z ∈ RY Z is
the matrix in the Y Z plane for each mode. Once the grids
are defined, the radiance field at a 3D point x for computing
volume density σ and color c is defined as follows:

σ(x), c(x) = Gσ(x),S(Gc(x), d), (4)

where S denotes a parameterized shallow MLP that con-
verts viewing direction d and appearance feature Gc(x) into
color. The features obtained from the grid, Gσ(x) and
Gc(x), are trilinearly interpolated from adjacent voxels.

To render an image for a given view, TensoRF uses a
differentiable classic volume rendering technique [18] with
σ and c. The color cp for each pixel reached by ray r is
computed as follows:

cp(r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci, (5)

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
is the transmittance; N

and δ denote the number of sampled points and the step
size between adjacent samples on ray r, respectively.

In this paper, we employ TensoRF as our backbone, as
it effectively reduces the uncertainty in information caused
by motion blur, enabling faster training and higher-quality
rendering compared to previous implicit neural representa-
tion.

4. Method
4.1. Continuous Motion Blur Kernel

Continuous Latent Space Modeling for Camera Motion.
Camera motion blur in images arises from camera move-

ment during exposure time. Such movement, due to the
motion of the hand, allows for the representation of cam-
era pose changes as a temporally continuous function, as
shown in Fig. 1. Therefore, our goal is to model the con-
tinuous movement of the camera within the exposure time
(t0 ≤ t < tN ). To reflect the physics inherent in cam-
era motion, we apply continuous dynamics to the latent
space of camera motion, and transform the latent feature
into changes in ray within the physical space. For this pro-
cess, we transform the given information of the rays into
latent features and apply them to a Neural-ODEs [7] to de-
sign a continuous latent space.

As shown in Fig. 4, we embed information about the ini-
tial ray into the latent space using a parameterized encoder
Eθ, utilizing the scene’s view index idxview and 2D pixel
location p:

z(t0) = Eθ (ψv(idxview), ψp(p)) , (6)

where z(t0) ∈ Rd is the latent feature of initial ray with hid-
den dimension d, and ψv and ψp denote embedding func-
tions for view and pixel information, respectively. Within a
small step limit of the latent feature z(t), the local contin-
uous dynamic is expressed as z(t + ϵ) = z(t) + ϵ · dz/dt.
To apply continuous dynamics to z(t), we model a parame-
terized neural derivative function f in the latent space. The
derivative of the continuous function is defined as follows:

dz(t)

dt
= f(z(t), t;ϕ), (7)

where ϕ denotes the learnable parameters of f . With z(t0)
and the derivative function f , we define an initial value
problem (IVP), and the features of subsequential rays in the
latent space are obtained by the integral of f from t0 to the
desired time. This dynamic leads to the format of ODEs,
and the process of obtaining latent features of the camera
motion trajectory using various ODE solvers [10, 11, 23] is
expressed as follows:

z (tn+1) = z (tn) +

∫ tn+1

tn

f(z(t), t;ϕ)dt, (8)

where 0 ≤ n < N , and N is the number of rays in the
camera motion. As a result of this approach, we obtain the
latent features Z ∈ RN×d for N rays.

Motion-blurred images all have different exposure times
if camera setting is not fixed. Therefore, assuming a com-
mon exposure time for all images when obtaining latent fea-
tures through the ODE solver may lead to suboptimal local
minima as all the images exhibit varying degrees of blur
due to different exposure times. Inspired by the difference
in exposure time for images of a single scene, we define
a chrono-view embedding function Ψ with a single-layer
MLP that simultaneously embeds given time t and view in-
dex idxview. Then, f is expressed as follows:

f(z(t), t;ϕ) → f(z(t), t,Ψ(t; idxview);ϕ). (9)

Exploiting Ψ, when the conditions of tn and idxview are
given to the ODE solver for the IVP, the subsequential la-
tent feature is defined as an unique solution by Picard’s ex-
istence theorem [29].

Motion-Blurring Kernel Generation. The latent fea-
tures Z of all rays on the camera motion trajectory, obtained
through continuous dynamics modeling, must be decoded
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Figure 2. Method overview of the SMURF. The CMBK encoder Eθ transforms the embedded 2D pixel location p of the initial ray and
view index into a latent feature. This feature is extended into an IVP with a parameterized derivative function fϕ in the latent space. Then,
it is solved by Neural-ODEs along with given time t and a chrono-view embedding function Ψ, obtaining latent features for all warped
rays. These features are transformed into changes of the ray (i.e., ∆p and ∆o) through a decoder Dξ, and we get the warped rays by
applying Eq. (11) to the initial ray. These rays are rendered into 2D pixel colors through a 3D grid-based method, and a blurry color is
acquired by summing up the colors with weights from the decoder.

into changes in camera pose. We define a decoder Dξ, rep-
resented by a shallow MLP parameterized by ξ, which out-
puts three components: the change in 2D kernel location
∆p, the change in ray origin ∆op, and the corresponding
weight wp as defined in Eq. (2):

(∆pt,∆opt , wt
p) = Dξ(z(t)). (10)

Then, t-th warped ray rt is generated from the initial ray
r = o+ τd by following equation:

rt = (o+∆opt) + τdpt , pt = p+∆pt, (11)

where o and p denote the ray origin and the 2D pixel loca-
tion of initial ray, respectively; dpt stands for the warped di-
rection by pt. After acquiring sharp pixel colors cp(rt) for
all N warped rays with inherent continuous camera move-
ment, the blurry pixel color is computed using Eq. (2).

Residual Momentum. Latent features of the camera mo-
tion trajectory are predicted by CMBK and are expected to
be optimized continuously. In this process, predicted origin
and direction of the ray rt may diverge from the initial ray
r, potentially leading to a suboptimal kernel. Deblur-NeRF
prevents ray divergence by applying a hyperbolic tangent
function to ∆pt for regularization. However, such regular-
ization is inefficient due to the varying intensity of motion
blur across all the images. To address this issue, we apply a
residual term to the latent derivative function f , implement-
ing regularization that ensures the predicted ray rti does not

significantly deviate from the previous ray rti−1 :

fϕ(z(ti−1)) → Λ(fϕ(z(ti−1)) + z(ti−1)), (12)

where the Λ is a shallow MLP for regularization and fϕ(z)
is the simplified version of f(z, t,Ψ(t; idxview);ϕ). This
approach prevents the divergence of the camera trajectory,
allowing rays to be warped regardless of the motion blur in-
tensity of the image. Note that while the proposed residual
momentum is implemented similarly to the methodology of
residual connections in ResNet [14], the underlying con-
cepts of the two approaches are distinct.

Output Suppression Loss. We encode the ray and the
view information into the latent space using Eθ, and decode
it into changes of the ray in camera motion trajectory using
Dξ. In this process, since latent feature the initial ray z(t0)
serves as the initial value for the ODE, there should be no
change in the initial ray. Therefore, we apply an output sup-
pression loss as follows:

Lsupp = λsupp ∥Dξ(z(t0))∥2 , (13)

where λ is the weight for the loss Lsupp. In this process, the
color weight wt0

p is not included for the loss. This concept
is similar to the cycle consistency in CycleGAN [64]. Min-
imizing the changes of initial ray to zero value, we ensure
that not just the initial ray but also the warped rays do not
diverge, providing a regularization effect.
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Table 1. Quantitative comparisons on synthetic and real-world
scene dataset. We evaluate the quantitative performance using
three metrics, demonstrating that our proposed model significantly
ourperforms existing ones even with faster training. The orange

and yellow cells respectively indicate the highest and second-
highest value.

Methods
Synthetic Scene Dataset Real-World Scene Dataset

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [33] 23.78 0.6807 0.3362 22.69 0.6347 0.3687
NeRF+MPR [61] 25.11 0.7476 0.2148 23.38 0.6655 0.3140
NeRF+PVD [48] 24.58 0.7190 0.2475 23.10 0.6389 0.3425

Deblur-NeRF [31] 28.77 0.8593 0.1400 25.63 0.7645 0.1820
PDRF-10* [40] 28.86 0.8795 0.1139 25.90 0.7734 0.1825
BAD-NeRF* [57] 27.32 0.8178 0.1127 22.82 0.6315 0.2887
DP-NeRF [25] 29.23 0.8674 0.1184 25.91 0.7751 0.1602

SMURF 30.98 0.9147 0.0609 26.52 0.7986 0.1013

4.2. Optimization

Following Sec. 3, our goal is to minimize the difference be-
tween the blurry pixel color ĉblur(r) obtained by the blur-
ring kernel and the ground truth pixel color of the motion-
blurred image cblur(r). Hence, the photometric loss Lphoto

is represented by Lphoto = ∥cblur(r)− ĉblur(r)∥22. Fur-
thermore, the parameterized 3D voxel grids Gσ and Gc are
regularized through the total variation [1] losses Lσ

TV and
Lc
TV , respectively. Additionally, to prevent divergence of

the warped rays and ensure initial ray consistency, Eq. (13)
is applied, resulting in our combined objective as follows:

L = Lphoto + λσTV Lσ
TV + λcTV Lc

TV + λsuppLsupp (14)

where the λσTV and the λcTV are the weights for Lσ
TV and

Lc
TV , respectively.

5. Experiments
5.1. Implementation Details

Datasets. In this experiment, we utilize the camera mo-
tion blur dataset published by [31], which is divided into
synthetic and real-world scenes. The synthetic scene dataset
comprises five scenes synthesized using Blender [8], with
multi-view cameras set up to render images with applied
camera motion. The camera motion trajectory is formed
by linearly interpolating between the poses of the first and
last cameras, and the rendered multi-view images are com-
bined in the linear RGB space to obtain the final blurry im-
ages. The real-world scene dataset consists of ten scenes
captured with an actual camera. The blurry images are ob-
tained by physically shaking the camera during the expo-
sure time, and the camera poses are calculated using the
images obtained with COLMAP [46, 47].

Training Details. We implement our model on Ten-
soRF [6], an explicit grid-based method, as our backbone
renderer. We upsample the voxel counts of grids Gσ and Gc

from 1283 to 4803, and set the feature component F of the
grids to 36 and 96, respectively. To implement the CMBK,
we set the number of warped rays N on the camera motion
trajectory to 8 and adopt the Euler method [11] as the solver
for the Neural-ODEs. Single scene training is conducted for
40k iterations, with the learning rates for the grids decaying
from 0.02 to 0.002, and the learning rate for CMBK decay-
ing from 0.001 to 0.0001. The weights for the losses λσTV ,
λcTV , and λsupp are all set to 0.1. All our experiments are
conducted on a single NVIDIA RTX 3090.

5.2. Novel View Synthesis Results

Quantitative Results. We show the quantitative eval-
uation of our network, SMURF, in comparison to var-
ious baselines on the two benchmark datasets proposed
by Deblur-NeRF [31], as shown in Tab. 1. NeRF+MPR
and NeRF+PVD are trained with a naive NeRF, where the
single-image deblurring methods MPR [62] and PVD [48]
to the input data. Additionally, since PDRF-10 [40] does
not specify LPIPS in their experiment, we obtain per-
formance of three evaluation metrics using their released
code. Furthermore, as BAD-NeRF [57] specifies results
from experiments on a modified benchmark dataset, for
a fair evaluation, we apply the released code of BAD-
NeRF to the benchmark dataset. According to Tab. 1,
despite significantly reduced training times compared to
previous methods, we demonstrate superior quantitative
performance across all the metrics. Especially, LPIPS
of SMURF demonstrates SMURF’s exceptional perceptual
quality across all datasets. Quantitative results of indiivid-
ual scenes are in the appendix.

Qualitative Results. We validate the effectiveness of
SMURF’s quantitatively high performance through qual-
itative evaluation via novel view rendering. Accord-
ing to Fig. 3, we compare our results with previous 3D
scene deblurring methods for five scenes (“FACTORY”,
“TANABATA, GIRL”, “BUICK”, and “POOL”). For the
“FACTORY” scene, when comparing the perceptual quality
of the reconstructed lowest part of the stairs, it is evident
that BAD-NeRF and SMURF best estimate the 3D geome-
try. However, BAD-NeRF shows an inability to capture the
overall color as accurately as other methods. In the render-
ing results for the “TANABATA” scene, while other methods
fail to accurately estimate the position of the power lines,
SMURF restores them most similarly to the reference im-
age. In the “GIRL” and “BUICK” scenes, our method no-
tably restores the visual quality of the shelf’s black support
rods and the car logo, respectively, most closely to the ref-
erence images. For the “BASKET” scene, the holes of the
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Figure 3. Qualitative comparisons on synthetic scenes and real-world scenes. SMURF produces results most similar to the reference
images and models the detailed aspects that are not captured by previous methods.

Table 2. Comparison of performance for individual scenes on the synthetic dataset. SMURF exhibits higher performance across all
scenes, with the exception of “COZYROOM,” where it shows slightly lower performance relative to others.

Synthetic Scene FACTORY COZYROOM POOL TANABATA TROLLEY

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Naive NeRF 19.32 0.4563 0.5304 25.66 0.7941 0.2288 30.45 0.8354 0.1932 22.22 0.6807 0.3653 21.25 0.6370 0.3633
MPR+NeRF 21.70 0.6153 0.3094 27.88 0.8502 0.1153 30.64 0.8385 0.1641 22.71 0.7199 0.2509 22.64 0.7141 0.2344
PVD+NeRF 20.33 0.5386 0.3667 27.74 0.8296 0.1451 27.56 0.7626 0.2148 23.44 0.7293 0.2542 23.81 0.7351 0.2567

Deblur-NeRF 25.60 0.7750 0.2687 32.08 0.9261 0.0477 31.61 0.8682 0.1246 27.11 0.8640 0.1228 27.45 0.8632 0.1363
PDRF-10* 25.87 0.8316 0.1915 31.13 0.9225 0.0439 31.00 0.8583 0.1408 28.01 0.8931 0.1004 28.29 0.8921 0.0931
BAD-NeRF* 24.43 0.7274 0.2134 29.77 0.8864 0.0616 31.51 0.8620 0.0802 25.32 0.8081 0.1077 25.58 0.8049 0.1008
DP-NeRF 25.91 0.7787 0.2494 32.65 0.9317 0.0355 31.96 0.8768 0.0908 27.61 0.8748 0.1033 28.03 0.8752 0.1129

SMURF 29.87 0.8958 0.1057 32.48 0.9285 0.0379 32.34 0.8884 0.0779 29.91 0.9300 0.0436 30.30 0.9307 0.0397

basket further demonstrate the superior qualitative outcome
of our results. Additional novel view rendering results, are
in the appendix.

5.3. Ablation Study

We conduct ablative experiments on all scenes in the given
datasets, with the results presented in Tab. 3. Additionally,

we perform experiments on the number of warping rays, N ,
which are provided in the appendix.

Chrono-View Embedding Function. To demonstrate
the effectiveness of the chrono-view embedding function Ψ
in making continuous latent space modeling robust to expo-
sure time, as discussed in Sec. 4, we conduct experiments
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Table 3. Ablations on embedding type and regularization
strategies. “Emb.”, “O.S. Loss”, and “R.M.” refer to embedding
type, the output suppression loss, and the residual momentum, re-
spectively. “C.V” and “T” denote chrono-view and time embed-
dings.

Emb. O.S. R.M. Synthetic Dataset Real-World Dataset

PSNR SSIM LPIPS PSNR SSIM LPIPS

C.V 26.17 0.8186 0.0759 25.27 0.7576 0.1121
C.V ✓ 28.49 0.8727 0.0675 25.60 0.7748 0.1057
C.V ✓ 30.72 0.9052 0.0684 25.99 0.7846 0.1181

– ✓ ✓ 30.54 0.8995 0.0709 25.74 0.7755 0.1194
T. ✓ ✓ 30.94 0.9158 0.0610 26.34 0.7881 0.1102

C.V ✓ ✓ 30.98 0.9147 0.0609 26.52 0.7986 0.1013

by dividing the embedding types into three categories. The
time embedding assumes that all images have the same ex-
posure time without incorporating view information, while
the chrono-time embedding applies view information, en-
suring that all images have distinct exposure time informa-
tion. As shown in Tab. 3, the application of time embed-
ding yields higher performance in general, but chrono-time
embedding shows higher performance only in real-world
scenes, while its effect in synthetic scenes is minimal. This
is attributed to the characteristics of the synthetic dataset
created by Deblur-NeRF using Blender, where motion blur
images are acquired by linearly interpolating between cam-
era poses. In other words, the synthetic scenes set a constant
speed for camera motion throughout the exposure time for
all images, implying that all input images share the same ex-
posure time. Our chrono-view embedding function assumes
that all images have varying exposure times, leading to its
minimal effect on the synthetic dataset. However, the real-
world dataset consists of images captured with an actual
camera, where the speed of camera motion is not constant
during the exposure time. Therefore, applying this function
to the real-world scenes yield improved performance due to
these variations.

Regularzation Strategies. To validate the effectiveness
of the regularization strategies presented in Sec. 4, namely
output suppression loss and residual momentum, we con-
duct various experiments as shown in Tab. 3. The output
suppression loss is designed to suppress changes in the ori-
gin and direction of the initial ray on the camera motion
trajectory to zero, yielding higher performance when ap-
plied. This is because the changes in rays are prevented
from diverging since the estimated poses also share the
same derivative function f , similar to the effect of the align-
ment loss proposed by Deblur-NeRF [31]. This similarity
suggests that aligning ray origins is robust to inaccuracies in
camera pose, which can be ambiguous due to motion blur.
Consequently, Tab. 3 demonstrates that the performance of

PSNR and SSIM in synthetic and real-world scenes im-
proves more significantly.

Residual momentum offers a similar effect to output sup-
pression loss. While the change in camera poses is es-
timated through a parameterized differential equation, the
shape of the derivative obtained in an unsupervised man-
ner could diverge. Therefore, we use residual momentum
to ensure the next pose does not deviate significantly from
the previous one. Tab. 3 shows that applying another reg-
ularization strategy, residual momentum, shows better per-
formance in terms of LPIPS than output suppression loss.
Combining two strategies, the SMURF results in best per-
formance across all metrics.

6. Limitations and Future Work
By adopting TensoRF [6], a 3D tensor factorization-based
method, as our backbone, we ensure high quantitative per-
formance, superior perceptual quality, and faster training.
However, with the advent of 3D Gaussian Splatting [20],
which allows for GPU-based rasterization instead of ray
tracing-based methods, backbones that facilitate more faster
training and rendering become available. Although our
backbone shows slower training and rendering speed com-
pared to 3D Gaussian Splatting, applying the main idea
of CMBK, continuous dynamics, to a rasterization-based
method is expected to result in faster training and rendering
with superior perceptual quality. Furthermore, by demon-
strating the applicability of continuous dynamics to the 3D
scene deblurring, we anticipate the possibility of designing
models that cover not only camera motion blur but also ob-
ject motion blur, which is caused by the movement of ob-
jects within the scene.

7. Conclusion
We have proposed SMURF, a novel approach that sequen-
tially models accurate camera motion for reconstructing
sharp 3D scenes from motion-blurred images. Unlike
previous approaches that estimate camera motion in a
single step, SMURF incorporates, for the first time, a
kernel for estimating sequential camera motions, named the
CMBK. This camera motion is represented with continuity
by solving continuous dynamics in the latent space using
Neural-ODEs. To prevent the divergence of rays estimated
by CMBK beyond the motion blur range, we apply reg-
ularization techniques: residual momentum and output
suppression loss. Furthermore, we model the 3D scene
using tensor factorization-based representation, which al-
lows for the integration of incomplete blurred information
and complete sharp information within adjacent voxels via
CMBK, thereby reducing the uncertainty of blurry infor-
mation. SMURF significantly outperform previous works
quantitatively with faster training, and its qualitative evalu-
ation is demonstrated through novel view rendering results.
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Figure 4. Detailed process for generating kernel. To highlight the continuous dynamics in the latent space, all embedding functions are
omitted from the figure. p(xt0) and p(yt0) correspond to the x and y coordinates of the pixel associated with the initial ray, respectively.

8. Details of CMBK
We elaborate on the continuous dynamics of the proposed
CMBK as shown in Fig. 4. We assume that camera mo-
tion encompasses inherent dynamics with a unique solution.
The assumed solution is represented by the lighter circles in
the left plots of Fig. 4 (b). Rather than implementing the in-
herent dynamics in a simple physical space, we refine them
within a latent space with parametric learning. The con-
tinuous dynamics of CMBK involve transforming the pixel
coordinates corresponding to the ray into latent features via
a parameterized encoder Eθ, and a unique numerical solu-
tion [29] is obtained by solving the initial value problem on
the latent space through a neural ordinary differential equa-
tion [7]. The solution in the latent space is transformed to
the physical space by the decoder Dξ, which represents the
change in ray origin, corresponding weight, and the change
in pixel of the warped ray relative to the pixel of the ini-
tial ray. This change defines the pixel corresponding to the
warped ray, and we specify Eq. (11) from the main paper:

pti = (p(xti), p(yti)) ,

p(xti+1
) = p(xti) + ∆p(xti+1

),

p(yti+1) = p(yti) + ∆p(yti+1).

(15)

Following our assumption, the change in the initial ray must
necessarily be zero, so we proposed the output suppression

loss to ensure it.

9. Motion Blur in Real-World

In real-world applications in 3D reconstruction, obtaining
sharp images necessitates a small aperture size to ensure a
substantial depth of field. This small aperture size inher-
ently requires longer exposure times due to the diminished
light intake, contradicting the assumption of very short ex-
posure times. Longer exposure times inevitably lead to
more intricate blur such as non-uniform blur as shown in
Fig. 5, which are not adequately represented by simple
modelings such as linear motion assumptions.

Therefore, using neural-ODEs to model camera motion
is particularly advantageous as they can accurately capture
both linear and non-linear paths. The neural-ODEs are ca-
pable of representing a continuum of functions, thus effec-
tively capturing the variations in camera motion regardless
of their complexity or the amount of motion. Therefore, our
approach is not only theoretically sound but also highly ap-
plicable in practical scenarios where the limitations of linear
motion assumptions may lead to suboptimals.
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BAD-NeRF (Spline)

Ours (Neural-ODE)

Figure 5. Blurry images caused by nonlinear camera path and ker-
nels predicted by BAD-NeRF [57] and our method.

10. Justification for Continuous Camera Mo-
tion

The impact of camera movements on image quality is pro-
foundly influenced by the dynamic camera motion, includ-
ing non-linear trajectories. Therefore, capturing the exact
position and orientation of the camera is crucial, which is
hard without considering the continuous nature of the mo-
tion [35]. While BAD-NeRF [57] uses linear-spline inter-
polation for camera path estimation, our method surpasses
BAD-NeRF, as detailed in the main paper. Spline models
are useful for predictable movements, but they lack the flex-
ibility to accurately model the intricate dynamics of camera
motion that frequently occurs in real-world. They are con-
strained to fixed intervals and predefined degrees of free-
dom, which can oversimplify the motion path. With neural-
ODEs, we consider sequences of continuous camera motion
that were previously unaccounted for. This approach is ad-
vantageous as they can accurately capture both linear and
non-linear paths. The neural-ODEs are capable of repre-
senting a continuum of functions, thus effectively captur-
ing the variations in camera motion regardless of their mo-
tion complexity. As shown in Fig. 5, while the warped rays
of kernel of BAD-NeRF are linear, SMURF shows a non-
linear camera motion path more close to actual motion blur.
Therefore, our approach is not only theoretically sound but
also highly applicable in practical scenarios where the lim-
itations of linear motion assumptions may lead to subopti-
mals.

While neural-ODEs may appear to be mathematically
complex, they simply utilize neural networks to solve nu-
merical differential equations, effectively combine tradi-
tional calculus with the learning capabilities of modern
computing. They not only streamline the modeling of dy-
namic systems, but it is also straightforward to implement,
making it a low-cost solution. Furthermore, it is important
to clarify that our primary goal is to model continuous func-
tions. The fact that the deblurring kernel is time-discrete
does not contradict this objective. Ours is derived from a
model that continuously defines the motion dynamics. We

will revise this section to ensure clarity. Moreover, in real-
world dataset of Deblur-NeRF [31], there is no ground truth
for the actual camera path, and it is also impractical to ob-
tain such ground truth in real scenarios, making it impossi-
ble to quantify the approximation error of the camera path.

11. Number of Warped Rays
We conduct extensive experiments to analyze the perfor-
mance of the proposed CMBK based on the number of
warped rays, N . As shown in Sec. 11, larger N requires
the more pixels to be rendered, resulting in an almost linear
increase in training time. Moreover, Fig. 6 shows the per-
formance according to the number of warped rays. Across
all datasets, an increase in the number of warped rays tends
to improve the PSNR and SSIM metrics. LPIPS noticeably
decreases with more rays, interpreting that a higher num-
ber of warped rays ensures better perceptual quality. The
performance for individual scenes in the synthetic dataset is
shown in Sec. 11, showing that LPIPS decreases with larger
value of N , and overall performance peaks when N is 8
or 9 except for the “COZYROOM” scene, . Analysis for the
“COZYROOM” scene is conducted in Sec. 12. As indicated
in Tab. 6, for the real-world dataset, a larger N generally
guarantees higher performance across most scenes. How-
ever, there are scenes where performance drops when N
exceeds 9, suggesting that the optimal N might be smaller
than 9. Even with N set to 5, which is the same condition
to DP-NeRF [25] and Deblur-NeRF [31], SMURF outper-
forms them across all the metrics. Furthermore, SMURF
achieves higher performance with fewer warped rays than
PDRF-10 [40], which set N at 10, validating the effective-
ness of our proposed ideas.
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Table 4. Performance and training time of SMURF according to the number of warped rays. The red , orange , and yellow cells
respectively indicate the highest, second-highest, and third-highest value.

Methods N Synthetic Scene Dataset Real-World Scene Dataset Training Time (h)
PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

SMURF 4 29.52 0.8829 0.1014 25.81 0.7710 0.1388 1.16
SMURF 5 30.30 0.9013 0.0926 25.91 0.7811 0.1253 1.27
SMURF 6 29.85 0.8929 0.0851 25.98 0.7822 0.1155 1.43
SMURF 7 30.23 0.8964 0.0751 26.40 0.7944 0.1052 1.56
SMURF 8 30.98 0.9147 0.0609 26.52 0.7986 0.1013 1.72
SMURF 9 30.41 0.9086 0.0575 26.24 0.7922 0.1021 1.88

Table 5. Per-scene quantitative performance of SMURF, according to the number of warped rays.

Synthetic N FACTORY COZYROOM POOL TANABATA TROLLEY

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

SMURF 4 25.13 0.7697 0.2127 32.46 0.9294 0.0407 33.04 0.8993 0.0825 28.38 0.9059 0.0825 28.57 0.9101 0.0890
SMURF 5 27.33 0.8381 0.2075 32.72 0.9315 0.0375 32.47 0.8904 0.0797 29.34 0.9222 0.0631 29.65 0.9241 0.0755
SMURF 6 26.74 0.8159 0.1897 31.74 0.9246 0.0381 32.56 0.8922 0.0778 29.22 0.9179 0.0604 28.99 0.9139 0.0599
SMURF 7 26.15 0.8010 0.1679 32.12 0.9269 0.0378 32.59 0.8926 0.0773 29.69 0.9269 0.0490 30.58 0.9348 0.0438
SMURF 8 29.87 0.8958 0.1057 32.48 0.9285 0.0379 32.34 0.8884 0.0779 29.91 0.9300 0.0436 30.30 0.9307 0.0397
SMURF 9 30.52 0.9065 0.0807 31.43 0.9198 0.0428 32.10 0.8849 0.0771 28.93 0.9184 0.0448 29.05 0.9136 0.0423

Real N BALL BASKET BUICK COFFEE DECORATION

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

SMURF 4 26.47 0.7424 0.1754 28.30 0.8653 0.0847 26.57 0.8270 0.1066 30.66 0.8676 0.1228 24.59 0.7972 0.1471
SMURF 5 26.63 0.7528 0.1549 27.96 0.8648 0.0741 26.03 0.8254 0.0947 30.93 0.8734 0.1172 24.22 0.7799 0.1497
SMURF 6 27.31 0.7678 0.1434 27.19 0.8463 0.0773 26.75 0.8315 0.0905 30.76 0.8731 0.1004 24.16 0.7744 0.1465
SMURF 7 27.68 0.7821 0.1325 29.24 0.8862 0.0617 27.05 0.8395 0.0867 30.67 0.8649 0.0931 24.97 0.8092 0.1220
SMURF 8 27.50 0.7760 0.1298 28.95 0.8842 0.0619 27.10 0.8409 0.0839 31.33 0.8879 0.0874 24.90 0.8114 0.1190
SMURF 9 27.16 0.7698 0.1315 28.52 0.8766 0.0631 26.92 0.8366 0.0813 31.41 0.8802 0.0870 24.12 0.7753 0.1405

Real N GIRL HERON PARTERRE PUPPET STAIR

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

SMURF 4 24.66 0.8410 0.1084 23.36 0.7144 0.1863 25.43 0.7644 0.1611 24.63 0.7496 0.1277 23.38 0.5406 0.1687
SMURF 5 24.73 0.8354 0.1028 23.47 0.7244 0.1717 25.22 0.7640 0.1474 24.69 0.7514 0.1239 25.22 0.6391 0.1171
SMURF 6 25.10 0.8473 0.0940 23.60 0.7386 0.1533 24.99 0.7569 0.1402 24.51 0.7493 0.1145 25.38 0.6371 0.0956
SMURF 7 25.43 0.8570 0.0884 23.66 0.7352 0.1457 25.22 0.7744 0.1302 24.70 0.7587 0.1076 25.42 0.6370 0.0846
SMURF 8 25.66 0.8592 0.0829 23.59 0.7317 0.1381 25.47 0.7825 0.1207 25.19 0.7702 0.1077 25.48 0.6421 0.0822
SMURF 9 25.56 0.8567 0.0822 23.81 0.7828 0.1333 24.91 0.7583 0.1216 24.71 0.7554 0.1035 25.31 0.6302 0.0777

Number of Warped Rays (𝒩) Number of Warped Rays (𝒩) Number of Warped Rays (𝒩)

Figure 6. Variation in performance with the number of warped rays.
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DP-NeRF DP-TensoRF SMURF

Figure 7. Qualitative comparison of rendering results and error maps for the Cozyroom scene. DP-TensoRF is a model that applies
the kernel proposed by DP-NeRF [25] to TensoRF [6].

12. Analysis for Low-PSNR Scenes

In this section, we analyze individual scenes that showed
slightly lower performance from the main paper. No-
tably, we visualize the error maps for the “COZYROOM”
scene from the synthetic dataset for DP-NeRF [25], DP-
TensoRF [6, 25], and SMURF in Fig. 7, where DP-TensoRF
is a model that applies the blurring kernel proposed by
DP-NeRF to TensoRF. The error map for DP-NeRF shows
bright wall rendered cleanly without noise, whereas DP-
TensoRF and SMURF exhibit noise on the wall. This in-
dicates that the cause of noise is not the proposed CMBK
but the inherent characteristics of the backbone model, Ten-
soRF. As shown in Fig. 8, aside from the noise on the wall,
the rendering results of SMURF show slightly sharper im-
age quality in other areas except the wall. Moreover, the
“COFFEE”, “PARTERRE”, and “PUPPET” scenes from real-
world dataset, SMURF shows the best LPIPS score but
somewhat lower PSNR. However, when comparing the ren-
dering results in Figs. 8 and 9, it is observable that the re-
sults of SMURF are most similar to the reference images
for these scenes.

13. Limitations and Future Work

By adopting TensoRF [6], a 3D tensor factorization-based
method, as our backbone, we ensure high quantitative per-
formance, superior perceptual quality, and faster training.
However, with the advent of 3D Gaussian Splatting [20],

which allows for GPU-based rasterization instead of opti-
mizing per ray, backbones that facilitate more faster train-
ing and rendering become available. Although our back-
bone may be slower compared to 3D Gaussian Splatting,
applying the main idea of CMBK, continuous dynamics, to
a rasterization-based method is expected to result in faster
training and rendering. Furthermore, by demonstrating the
applicability of continuous dynamics to the 3D scene de-
blurring, we anticipate the possibility of designing mod-
els that cover not only camera motion blur but also object
motion blur, which is caused by the movement of objects
within the scene.

14. Per-Scene Quantitative Results

To demonstrate the superiority of SMURF, we present the
individual performance results for all synthetic and real-
world scenes in Tab. 6. For synthetic scenes, except for
“COZYROOM,” all scenes show quantitatively high perfor-
mance, with this scene also displaying no significant dif-
ference when compared to DP-NeRF. Additionally, for the
real-world scenes, despite a few scenes exhibiting some-
what lower PSNR, they demonstrate better perceptual qual-
ity through superior LPIPS scores. For a fair comparison,
we also include the performance of DP-TensoRF, which ap-
plies the state-of-the-art DP-NeRF [25] to the explicit volu-
metric rendering method using the TensoRF [6] backbone.
Although DP-TensoRF benefits from reduced training time
due to the use of the TensoRF backbone, it shows negligible
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performance differences when compared to DP-NeRF, and
our SMURF outperforms both. Notably, DP-TensoRF gen-
erally exhibits lower PSNR and SSIM scores than DP-NeRF
on real-world scenes. This indicates that the performance of
our SMURF is not significantly dependent on the TensoRF
backbone.

15. Additional Rendering Results
Additional rendering results are shown in Fig. 8 and Fig. 9,
demonstrating that our SMURF offers the best perceptual
quality when compared to the reference images. Please re-
fer to the supplementary videos for comparisons of rendered
videos.
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Synthetic FACTORY COZYROOM POOL TANABATA TROLLEY

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Naive NeRF 19.32 0.4563 0.5304 25.66 0.7941 0.2288 30.45 0.8354 0.1932 22.22 0.6807 0.3653 21.25 0.6370 0.3633
MPR+NeRF 21.70 0.6153 0.3094 27.88 0.8502 0.1153 30.64 0.8385 0.1641 22.71 0.7199 0.2509 22.64 0.7141 0.2344
PVD+NeRF 20.33 0.5386 0.3667 27.74 0.8296 0.1451 27.56 0.7626 0.2148 23.44 0.7293 0.2542 23.81 0.7351 0.2567

Deblur-NeRF 25.60 0.7750 0.2687 32.08 0.9261 0.0477 31.61 0.8682 0.1246 27.11 0.8640 0.1228 27.45 0.8632 0.1363
PDRF-10* 25.87 0.8316 0.1915 31.13 0.9225 0.0439 31.00 0.8583 0.1408 28.01 0.8931 0.1004 28.29 0.8921 0.0931
BAD-NeRF* 24.43 0.7274 0.2134 29.77 0.8864 0.0616 31.51 0.8620 0.0802 25.32 0.8081 0.1077 25.58 0.8049 0.1008
DP-NeRF 25.91 0.7787 0.2494 32.65 0.9317 0.0355 31.96 0.8768 0.0908 27.61 0.8748 0.1033 28.03 0.8752 0.1129

DP-TensoRF 25.54 0.7798 0.2250 32.13 0.9252 0.0397 32.14 0.8826 0.0877 28.22 0.9007 0.0917 28.59 0.9075 0.0963

SMURF 29.87 0.8958 0.1057 32.48 0.9285 0.0379 32.34 0.8884 0.0779 29.91 0.9300 0.0436 30.30 0.9307 0.0397

Real-World BALL BASKET BUICK COFFEE DECORATION

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Naive NeRF 24.08 0.6237 0.3992 23.72 0.7086 0.3223 21.59 0.6325 0.3502 26.48 0.8064 0.2896 22.39 0.6609 0.3633

Deblur-NeRF 27.36 0.7656 0.2230 27.67 0.8449 0.1481 24.77 0.7700 0.1752 30.93 0.8981 0.1244 24.19 0.7707 0.1862
PDRF-10* 27.37 0.7642 0.2093 28.36 0.8736 0.1179 25.73 0.7916 0.1582 31.79 0.9002 0.1133 23.55 0.7508 0.2145
BAD-NeRF* 21.33 0.5096 0.4692 26.44 0.8080 0.1325 21.63 0.6429 0.2593 28.98 0.8369 0.1956 22.13 0.6316 0.2894
DP-NeRF 27.20 0.7652 0.2088 27.74 0.8455 0.1294 25.70 0.7922 0.1405 31.19 0.9049 0.1002 24.31 0.7811 0.1639

DP-TensoRF 25.85 0.7164 0.2106 27.04 0.8434 0.1099 25.02 0.7981 0.1603 29.67 0.8424 0.1323 22.78 0.7362 0.1801

SMURF 27.50 0.7760 0.1298 28.95 0.8842 0.0619 27.10 0.8409 0.0839 31.33 0.8879 0.0874 24.90 0.8114 0.1190

Real-World GIRL HERON PARTERRE PUPPET STAIR

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Naive NeRF 20.07 0.7075 0.3196 20.50 0.5217 0.4129 23.14 0.6201 0.4046 22.09 0.6093 0.3389 22.87 0.4561 0.4868

Deblur-NeRF 22.27 0.7976 0.1687 22.63 0.6874 0.2099 25.82 0.7597 0.2161 25.24 0.7510 0.1577 25.39 0.6296 0.2102
PDRF-10* 24.12 0.8328 0.1679 22.53 0.6880 0.2358 25.36 0.7601 0.2263 25.02 0.7496 0.1532 25.20 0.6235 0.2288
BAD-NeRF* 18.10 0.5652 0.3933 22.18 0.6479 0.2226 23.44 0.6243 0.3151 22.48 0.6249 0.2762 21.52 0.4237 0.3341
DP-NeRF 23.33 0.8139 0.1498 22.88 0.6930 0.1914 25.86 0.7665 0.1900 25.25 0.7536 0.1505 25.59 0.6349 0.1772

DP-TensoRF 21.32 0.7775 0.1614 22.62 0.6861 0.2039 25.37 0.7708 0.1761 24.29 0.7376 0.1495 23.52 0.6022 0.1752

SMURF 25.66 0.8592 0.0829 23.59 0.7317 0.1381 25.47 0.7825 0.1207 25.19 0.7702 0.1077 25.48 0.6421 0.0822

Table 6. Comparison of performance for individual scenes. SMURF exhibits higher performance across all synthetic scenes, with the
exception of “COZYROOM,” where it shows slightly lower performance relative to others. For real-world scenes, while SMURF shows
slightly lower PSNR and SSIM in some scenes, it shows significantly better LPIPS across all scenes compared to previous methods.
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PDRF-10 DP-NeRF Ours Reference

Figure 8. Qualitative comparison for individual scenes.
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PDRF-10 DP-NeRF Ours Reference

Figure 9. Qualitative comparison for individual scenes.
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